
AN EMPIRICAL STUDY OF SOFTWARE ERROR DETECTION
USING SELF-CHECKS.

Sun 9 D. Cha

3,'ahoy G Leveson

Tzmothy J. Sh:meall

Dept. of Information & Computer Science

University of California, Irvine

Irvine, CA 92717

John C. Kn:ght

Dept. of Computer Science

University of Virginia

Charlottesville, VA 22903

U/J

i. / <

)
[,,7

/;
I

__+,

Abstract

This paper presents the results of an empirical study of error

detection using self-checks. A total of twenty-four graduate stu-

dents in computer science at the University of Virginia and the

University of California, Irvine, were hired as programmers. Work-

ing independently, each first prepared a set of self-checks using just

the specification for an application, and then each modified an

existing impbmentation of the specification. The modified pro-

grams were analyzed to classify the various checks that the pro-

grammers wrote, and then tested to measure the error-detection

performance of the checks.

The goal of this study was not just to obtain quantitative

results but to learn more about such checks and how they might

best be inlpleme_ted. This information may result in better

methods for formulating checks, making them easier to write and

more effective. The analysis of the checks revealed that there are

great differences in the ability of individual programmers to design

effective checks. We found that some checks that nfight have been

effective failed to detect a fault because they were badly placed,

and there were numerous instances of checks signaling non-existent

errors. In general, specification-based checks alone were not as

effective as combining them with code-based checks. Faults were

detected by the self-checks that had not been detected previously

by voting 28 versions of the program over a nfillion randomly-

generated test cases.

Introduction

Crucial digital systems can fail because of faults in either

software or hardware. A great deal of research in hardware design

has yielded computer architectures of potentially very high reliabil-

ity, such as SIFT "_ and FTMP 13. In addition, distributed systems

(incorporating fail-stop processors 2°) can provide graceful degrada-

tion and safe operation even when individual computers fail or are

physically damaged.

The state of the art in software development is not as

advanced. Current production methods do not yield software with

the required reliability for crucial systems, and advanced methods

of formal verification 1"_ and synthesis is are not able to deal with

software of the required size and complexity. Fault tolerance t0 has

been proposed as a technique to allow software to cope with its

own faults in a manner reminiscent of the techniques employed in

hardware fault tolerance. Many detailed proposals have been made

in the literature, but there is little empirical evidence to judge

which techniques are most effective or even whether they can be

applied successfully to real problems. This study is part of an on-

going effort by the authors to collect and exanfine empirical data
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on software fault tolerance methods in order to focus future

research efforts and to allow decisions to be made about real pro-

jects.

Previous studies by the authors have looked at N-version pro-

gramnnng in terms of independence of failures |4, reliability

improvement, and error detection 1;. Other empirical studies of :'v:

version programnfing have been reported 3'¢9`10Al'2t, A study by

Anderson 1 showed promise for recovery blocks but concluded that

acceptance tests are difficult to write. Acceptance tests are a sub-

set of the more general run-time assertion or self-check used in

exception handling and testing schemes; such tests are performed

after completion of a program and are essentially external tests

that cannot access any local state. Such tests can, of course, also

be applied to subprograms within programs. More information

about the use of self-checks to detect software errors might result

in better methods for formulating checks, making them easier to

write and more effective. Our goal in this study was not merely to

provide numerical data but to learn more about such checks and

how they might best be implemented.

In order to eliminate as many independent variables from the

experiment as possible, it was decided to focus on error detection

apart from other issues such as recovery. This also means that the

results have implications beyond software fault tolerance alone, for

example in the use of embedded assertions to detect software errors

during testing 22,3 Furthermore, in some safety-critical systems

(e.g., the Boeing 73%300 and the Airbus A310) error detection is

the only objective. In these systems, software recovery is not

attempted and, instead, a non-digital backup system such as an

analog or human alternative is immediately given control in the

event of a computer system failure. The results of this study may

have immediate application in these areas. The next section

describes the design of the study. Following this, the results are

described and conclusions drawn.

Experimental Design

This study uses the programs developed for a previous experi-

ment by 14, Twenty-seven versions of a program to read radar data

and determine whether an interceptor should be launched to shoot

down the object (hereafter referred to as the Launch Interceptor

Prograni, or LiP) were prepared from a conliuon specification by

graduate students and seniors at the University of Virginia and the

University of California, Irvine. Extensive efforts were made to

ensure that individual students did not cooperate or exchange

information about their program designs during the development

phase. The twenty-seven LIP programs have been analyzed by

running one million randomly generated test cases on each prograzn

and locating the individual faults that were detected during the

testing procedure.
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In the present study, 8 students froth U('I and [6 students

from UVA were employed for a week's hole to instrument the pro-

grams with self-checking code in an attempt to detect errors in the

programs. Eight programs were selected from the 27 and each was

randomly assigned to three students (one from UCI and two from

UVA). The selection of programs to be used was accomplished by

first eliminating the programs that had no previously detected

faults and then randomly selecting 8 of the remaining 21 programs.

The students were all graduate students in computer science with

an average of 2.35 years of graduate study. Professional experience

ranged from 0 to 9 years with an average of 1.7 years. None of the

participants had prior knowledge of the LIP program nor were they

familiar with the results of the previous experiment. There was no

significant correlation found between a participant's graduate or

industrial experience and their success at writing self-checks.

Participants were provided with a brief explanation of the

study along with an introduction to writing self-checks. All also

read Chapter 5 on Error Detection from a textbook on fault toler-

ance :t. The participants were first asked to study the LIP

specification and to write checks using only the specification, the

training materials, and any additional references the participants

desired. When they had submitted their initial checks, they were

randomly assigned a program to instrument. The participants

were asked to write checks with and without looking at the code in

order to determine if there was a difference in effectiveness between

self-checks designed by a person working from the requirements

alone and those for which the person has access to and inforn_ation

about the program code. On the one hand, the person working

only from the requirements inight provide mote independence by

not being influenced by the written code. However, it could also

be argued that looking at the code will suggest different and

perhaps better self-checks. Because we anticipated that the process

of examining the code might result in the participants detecting

faults through code-reading alone, participants were asked to report

any such detected faults but to still attempt to write a self-check

to detect the fault.

The instrumented versions were subjected to an acceptability

criterion (200 randondy generated test cases) as in the previous

experiment. The original versions were known to run correctly on

that data, and we wanted to attempt to remove obvious faults

introduced by the self-checks. If any false alarms were raised by

these 200 test cases (faults reported that did not actually exist) or

if new faults were detected that had been introduced into the pro-

gram by the instrumentation, the programs were returned to the

participants for correction. Along with the instrumented version,

participants submitted time sheets, background profile question-

naires, and descriptions of all program faults identified by code

reading.

After the instrumented programs had satisfied the acceptabil-

ity criterion, they were executed using the test cases on which they

had failed in the previous experiment along with 20,000 new

randomly-generated test cases to see if new faults might have been

detected. Finally, the self-checks were carefully examined and

catalogued as to type of check and effectiveness.

Results

The first task of the experiment participants was to read

through the program requirements specification and to design self-

checks based solely on that specification. These self-checks were

found to fall into four groups based on the general strategy of

check used:

[1] Duphcaf.ion Checks: self-checks that duplicate the functional-

ity of the code and compare results. Most, but not all, of the

self-checks in this group use algorithms different from the ori-

ginal source code.

[2] Structural Checks: self-checks that verify the proper use of

data .structures or the proper semantics of code. Examples

include a check that verifies that the exit condition of a lc_op

is true mm_edtately following the loop and a check that

verifies that data values have not been improperly overwrit-

tell.

"3: Reversal Checks: self-checks that reverse tire operation per-

formed by the code and then see if the results ate consistent

with the input data.

"4" Conszs_,ency Checks: self-checks that determine if the resuhs

have certain properties. Examples of consistency checks

include range checking, arithmetic exception checking, and

type checking.

Table 1 shows the classification of the self-checks designed from the

specification. I The participants labeled 3c and 8b did not provide

specification-based self-checks. Note that the largest number of

checks written were consistency checks followed by duplication

checks. Performance is discussed later, but Tables 3 and 5 show

that a total of 33 self-checks were completely or partially effective

in detecting errors. Of these 33 effective checks, 4 (or 12%) were

formulated by the participants after looking at the requirements

specification only. The remaining 88% of the effective checks were

designed after the participants had looked at the code. Although it

might be hypothesized that acceptance tests in the recovery block

structure should be based on the specification alone, our results

indicate that effectiveness of the self-checks can be improved when

the specification-based checks are refined and expanded by source

code reading and a thorough and systematic instrumentation of the

program. It appears that it is very useful for the instrumentor to

actually see the code when writing self-checks.
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Table h Specification-Based Self-Checks
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Figure I: Summary of Participant Time-Sheets

42

52

The second task of the participants was to instrument a par-

tieular program with self-checks. No limitations were placed on

the participants as to how much time could be spent [although

they were pard only for a 40 hour week which effectively set an

upper boun&) or how much code could be added. Table 2

describes the change in length in each program during instrumenta-

tion. Note that there is a great variation in tile anlount of code

added, ranging from 48 lines to 835 lines. Participants added an

average of 37 self-checks, varying from 11 to 97. Despite this vari-

ation, there was no correlation between the total number of checks

inserted by a participant and the number of those checks that were

effective at finding faults. That is, more checks did not necessarily

mean better fault detection.

There was also no statistically significant relationship

between the number of hours claimed to have been spent (as re-

ported on tile timesheets) by the participants and whether or not

they detected any program faults. Figure 1 shows tile amount of

time each participant spent reading the specification and code,

developing self-checks based on that reading, implementing the

self-checks and debugging the self-checks. Three participants (14a,

20a, and 25a) did not submit a time-sheet and are excluded from

this figure.

Table 3 classifies the program-based self-checks in terms of

strategy used and effectiveness• Checks are classified as effective if

they correctly report the presence of an error during execution.

Two partially effective checks by participant 233 that detect an er-

ror most {but not all) of the time are counted as effective.

Ineffective checks are those that do not signal an error when one

occurs during run-time in the module being checked. FMse alarms

÷
+Several reported spending more than 40 hours on tile project.

"Version Number of Lines Increase

original a b c a b c

757 909 1152 805 152 395 48

643 859 887 700fi16 244 57

8 . 600 1046 1356 8241446 756 224

14 605 905 1342 7121300 737 I07
20 533 611 1368 596 78 835 63

23 349 I065 417 544 68 195

25 906 1644 lOl6 1022 738 110 I16

Table 2: Lines of Code Added During Instrumentation

signal an error when no error is present. Finally, the effectiveness

is classified as unknown if the check does not signal an error and

the module being tested is correct.

It can be seen from the last (Total) row in Table 3 that

duplication and consistency checks were about equally effective in

detecting faults although more consistency checks were used. For

these programs, structural and reversal checks were not effective,

but this may have been influenced by the types of faults that were

actually in the programs. We examined the ineffective self-checks

(checks on code that contained faults but did not detect the faults)

in detail. They appear to fail due to one or more of the following

reasons:

. Wrong self-check strategy - the participant used a type of

self-cheek inappropriate to detect the fault present in the

code. For example, use of a structural check when the fault

was an inadvertent substitution of one variable for another in

an expression.
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15 11
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Table 3: Self-Check Classification

,b Wrong check placement - the participant placed the self-

check in a location where not all results were checked, and

the fault was on a different path.

• Use of the original faulty code in the self-chec'k - the partici-

pant falsely assumed a portion of the code was correct and

called that code as part of the self-check.

It should be noted that the placement of the checks may be as cru-

cial as the content. This has important implications for future

research in this area and for the use of self-checking in real applica-
tions.

It should not be assumed that a false alarm involved a fault

in the self-checks. In fact, there were cases where an error message

was printed even though both the self-check and the original code

were correct. This occurred when the self-check made a calculation

using a different algorithm than the original code. Because of the

inaccuracies introduced by finite precision arithmetic compounded

by the difference in order of operations, the self-check algorithm

sometimes produced a result that differed from the original by

nmre than the allowed tolerance. Increasing the tolerance does not

necessarily solve this problem in a desirable way. This same prob-

lem occurred in our previous experiment and is discussed in detail
elsewhere _.

Some faults were detected while the participants were reading

the code. The numbers in Table 4 refer to the numbering used to
identify the individual faults described elsewhere s. Three faults

were reported that actually were not faults; the participant misun-
derstood the code.

Table 5 summarizes the detected faults by how they were

found. 20% of the detected faults were detected by specification-

based checks, 40% by code-reading, and 40% by code-based checks.
Note that often more than one check detected the same fault in the

code-based case, which was not true of the specification-based or

code-reading faults.

*Tho, r two chc,-k_ were effective m,,_t hut not all, ,,f the ttltW

: Version ] 3a i 6a 12, 20b ' '20( 25a

Table 4: Faults Det,-, tt',l Throueh C',)d,.-Ft,-adin_

Object

Faults Detected

Effective Checks

Due To

Spec-ba_sed Code _ Code- ba_sed

Design i Reading I Design

(SP_ [ (CRJ {CD_

4 : 8 8

4 i 8 21

Total

2O

i 33

Table S: Fault Detection Classified by Instrumentation Technique

One final way of looking at the results of this study is to con-

sider the number of faults detected and introduced by the partici-
pants. Table 6 shows this information.

This data makes very clear the difiqculty of writing effective self-

checks. Of 20 previously known faults in the programs, only 11

were detected (the 14 detected known faults in Table 6 include

some multiple detections of the same fault) and only 3 of the 11

detected faults were found by more titan one of the three partici-

pants instrumenting the same program. It should be noted, how-

ever, that the versions used in the experiment are highly reliable

(an average of better than 99.9% success rate on the previous one"

nfillion case testing), and many of the faults are quite subtle. We

could find no particular types of faults that were easier to detect

than others. Individual differences in ability appear to be impor-
tant here.

One rather unusual case occurred. One of the new faults

detected by participant 8c was detected quite by accident. There

isa previously unknown fauhin the program. However, the check-

ing code contains the same fault. An error message is printed

because the self-check code uses a different algorithm than the ori-

ginal, and finite precision problems cause the self-check to differ

fxom the original by more than the allowed real-number tolerance.

We discovered the new fault while evaluating the error messages

printed, but it was entirely by chance. Erroneous triggering of

self-checks due to finite precision problems occurred in modules

that did not contain a fault, and in that case the error message was

classified as a false alarm (as discussed above). Our decision was

to classify the self-check as effective because it does signal a fault

when a fault does exist, but this is a subjective choice.

It is very interesting that the self-checks detected 6 faults not

previously detected by comparison of twenty-eight versions of the
program over a million test eases 14, After closer examination of

"the newly discovered faults, we found that one of the reasons they

were not uncovered previously is that the random test case selec-

tion algorithm inadvertently did not allow generating those test

cases that would have revealed sonte of the faults. This points out

the well-known difficulty in selecting appropriate test cases. The

fact that the self-checks uncovered new faults even though the pro-
grams were run on the same test cases that did not reveal the

faults previously implies that self-checks may have advantages over

voting alone. To understand why, it is instructive to exanfine an

example of one of the previously undetected faults.

Solue algorithms are unstable under a few conditions. More

specifically, several mathematically valid forlnulae to compute the

area of a triangle are not equally reliable when implemented using

finite precision arithmetic. In particular, the use of Heron's for-
lllula:
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Table 6: Sunmaary of Fault Detection

,,,,co_vT" (_-_ )" (_-b )" (_ -c )

where a, b , and c are the dist,'_nces between the three points and

s is (a -_ b -_ c )/2, fails m the rare case when all the following con-

ditions are met simultaneously:

* Three points are almost co-linear (but not exactly), s will

then be extremely close to one of tile distances, say a, so

that (s -a) will introduce round-off errors (around 10 -16 in

the hardware employed in this experiment).

• Tire product of the rest of the terms, s'(s-b)'(s-c), is

large enough (approximately 104 ) to make rounding errors

significant through multiplication (approximately 10-1-").

• Tire area formed by taking the square root is slightly larger

than tile real number comparison tolerance (10 -6 in our

example) so that the area is not considered zero.

Other formulas, for example

z ]y 2+z 2y3+z 3Y l-Y _z 2-y_.z3- y3z 1

cleea -

where z, and y, are the coordinates of the three points, did not fail

because the potential roundoff errors cannot become "significant"

due to tire order of operations. 2 of the 6 previously unknown

faults detected involved the use of Heron's formula. Because tire

source of the unreliability is in tile order of computation and

inherent in the formula, relaxing the real number comparison toler-

ance will not prevent this problem. The fault in Heron's formula

was not detected during the previous testing because the voting

procedure compared the final result only, whereas the self-check

verified the validity of tile intermediate results as well. For the few

cases in which it arose, the fanJts did trot affect the correctness of

the final output. However, under different circumstances the final

output would have been incorrect.

Although new faults were introduced thr,,u_h tlw sclf-_hecks.

this is not very surprising. It is known that , l:._n_in_ s_mieone

else's program is difficult and whenever new c,)dt' ts added t,, ,t pro-

grant there is a possibility ofintr,_ducing faults All software fault

tolerance methods involve adding additional code of one kind or

another to the basic application program. The maior causes of the

new faults were an algorithmic error in a redundant computation.

use of an uninitialized variable during instrumentation, logic error,

use of Heron's formula, infinite loops added in instrumentation, out

of bounds array reference, etc. The use of uninitialized variables

occurred due to incomplete program instrumentation. A participant

would declare a temporary variable to hold an intern_ediate value

during the computation, but fail to assign a value on some path

through the conrputation. A more rigorous acceptability criterion

may have detected these faults earlier, especially those that cause

an abnormal ternfination of the program.

Conclusions

This study ,,,,'as not designed to provide definitive answers to

any particular questions, but instead to attempt to determine what

the important questions are. This should guide us and others in

the design of further experiments, in tl_e evaluation of current pro-

posals, and in the design of new methodologies. Some important

research issues arise as a result of this study that need further

study such as:

[1] There appear to be great differences ill individual ability to

design effective self-checks. This suggests that more training

or experience might be helpful. Our participants had little of

either although all were familiar with the use of pre- and

post-conditions and assertions to formally verify programs.

The data suggests that it might also be interesting to investi-

gate the use of teams to instrument code.

[2] The programs were instrumented with self-checks in our

study by participants who did riot write the original code. It

would be interesting to compare this with instrumentation by

the original programnrer. A reasonable argument could be

made both ways. The originM programmer, who presumably

understands the code better, might introduce fewer new faults

and nfight be better able to place the checks. On the other

hand, separate instrumentors might be more likely to detect

faults since they provide a new view of the problenL More

comparative data is needed here.

[3} Placement of self-checks appeared to cause problems. Some

checks that might have been effective failed to detect a fault

because they were badly placed. This implies either a need

for better decision-making and rules for placing checks or

perhaps different software design techniques to make place-

ment easier.

[4] Specification-based checks alone were not as effective as using

them together with code-based checks. This implies that

fault tolerance may be enhanced if the alternate blocks in a

recovery block scheme, for example, are also augmented with

self-checks along with the usual acceptance test. This may

also apply to pure voting schemes. A combination of fault-

tolerance techniques may be more effective than any one

alone. More information is needed on how best to integrate

these different proposals.

[5] The process of writing self-checks is obviously difficult. How-

ever, there may be ways to provide help with this process.

For example, Leveson and Shimeall (1983) suggest that safety

analysis using software fault trees (Leveson and Harvey) can

he used to determine the content and the placement of tire

most important self-checks. Other types of application or

program analysis may also be of assistance. Finally, empiri-

cal data about common fault types may be important in

learning how to instrument code with self-checks.



Manypromisingresearchtopics,empiricalstudies,andexperiments
aresuggestedbytheresultsofthisstudythatmayleadtobetter
proceduresforsoftwareerrordetection.
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